Log in
Register
Menu
Log in
Register
Home
What's new
Latest activity
Authors
Forums
New posts
Search forums
What's new
New posts
Latest activity
Members
Current visitors
New posts
Search forums
Menu
Log in
Register
Install the app
Install
Forums
Satellite TV receivers & systems support forums
DISH SETUP: Single sat, Multi-Sat & Motorised
Design for a Positioner with DiSEqC Decoder
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Reply to thread
Message
<blockquote data-quote="harm lok" data-source="post: 1089909" data-attributes="member: 415123"><p>This is copy of the livescript i have programmed in Matlab. It is not just a complete algorithm in one equation , </p><p>but a step by step approach so everyone could understand and use this method for custom situations.</p><p>I have tested the script with my own channelmaster 1.2m offset dish with a 18 Inch actuator.</p><p>I have also programmed an animated plot so also the moves off the actuator and dish are visualised. </p><p> I will publish it here when i have converted it to an image that can published at this blog.</p><p></p><p>[ATTACH=full]130894[/ATTACH]</p><p></p><p>Matlab livescript</p><p>----------------------------------------------------------------------------------------------</p><p></p><p>Defining the dish variables</p><p></p><p>Radius = 370;</p><p></p><p>The radius between dish pivot and the actuator pivot point on the dish lever (mm)</p><p></p><p>DishpivotOffset = 190;</p><p></p><p>The length between dish pivot and the pivot of the actuator mount. (mm)</p><p></p><p>ActuatorOffset = 48;</p><p></p><p>Length between actuator pivot point and the centre of the actuator mount. (mm)</p><p></p><p></p><p>MinActuatorLength = 210;</p><p>MaxActuatorLength = 550;</p><p></p><p>Minimal en maximum actuator extensions. (mm)</p><p></p><p>ActPivToRadiusMin = sqrt( ( (ActuatorOffset^2) + (MinActuatorLength^2) ) ) ;</p><p>ActPivToRadiusMax = sqrt( ( (ActuatorOffset^2) + (MaxActuatorLength^2) ) ) ;</p><p></p><p>Calculate the distances between the actuator pivot and the actuator pivot on the </p><p>disk lever for the minimal and maximum actuator lengt. (Pythagorean theorem)</p><p></p><p>Pact = [ 0 ; 0 ];</p><p>Pdsh = [ 0 ; DishpivotOffset ];</p><p></p><p>Ract = ActPivToRadiusMin ;</p><p>Rdsh = Radius ;</p><p></p><p>Definition off the coordinates for both virtual circles of the actuator and the dish. </p><p>This the definition of the virtual circles for minimal extended actuator. </p><p>Given is a virtual circle with a center point M (a, b) and a radius r. </p><p>So for every point on the virtual circle i have used midpoint equations :</p><p></p><p>[ATTACH=full]130896[/ATTACH]</p><p></p><p> D2 = sum((Pact-Pdsh).^2);</p><p> P0 = (Pdsh+Pact)/2+(Rdsh^2-Ract^2)/D2/2*(Pact-Pdsh);</p><p> t = ((Rdsh+Ract)^2-D2)*(D2-(Ract-Rdsh)^2);</p><p> if t <= 0</p><p> fprintf('The circles don''t intersect : initial values not correct.\n')</p><p> else</p><p> T = sqrt(t)/D2/2*[0 -1;1 0]*(Pact-Pdsh);</p><p> Pa = P0 + T;</p><p> Pb = P0 - T;</p><p> end</p><p></p><p>The virtual circles are defined as a collecting of points based on a rotating triangle. </p><p>I have used the pivot of the actuator as coordinate [ 0 , 0] </p><p>Pa and Pb are circles' intersection points . We only need the value Pb. </p><p>Pa is the other intersection point which as not important for our calculation.</p><p>Pa = Coordinate of the minimal extended actuator .</p><p></p><p>Pact = [ 0 ; 0 ];</p><p>Pdsh = [ 0 ; DishpivotOffset ];</p><p></p><p>Ract = MaxActuatorLength ;</p><p>Rdsh = Radius ;</p><p></p><p>Definition off the coordinates for both virtual circles of the actuator and the dish. </p><p>This the definition of the virtual circles for minimal extended actuator</p><p></p><p> D2 = sum((Pact-Pdsh).^2);</p><p> P0 = (Pdsh+Pact)/2+(Rdsh^2-Ract^2)/D2/2*(Pact-Pdsh);</p><p> t = ((Rdsh+Ract)^2-D2)*(D2-(Ract-Rdsh)^2);</p><p> if t <= 0</p><p> fprintf('The circles don''t intersect : initial values not correct.\n')</p><p> else</p><p> T = sqrt(t)/D2/2*[0 -1;1 0]*(Pact-Pdsh);</p><p> Pc = P0 + T;</p><p> Pd = P0 - T;</p><p> end</p><p></p><p>Pc and Pd are circles' intersection points . We only need the value Pd. </p><p>Pc is the other intersection point which as not important for our calculation.</p><p>Pc = Coordinate of the maximal extended actuator .</p><p></p><p> Angle = sin (Pb(2) / (DishpivotOffset - Pb(1) ) ) ;</p><p> MinAngledegree = Angle / (pi/180);</p><p> EastlimitAngle = 90 + MinAngledegree </p><p></p><p> <em> EastlimitAngle = 67.2740</em></p><p></p><p> Angle = sin (Pd(2) / (DishpivotOffset - Pd(1) ) ) ;</p><p> MaxAngledegree = (Angle / (pi/180) );</p><p> WestlimitAngle = ( 90 + MaxAngledegree ) - EastlimitAngle </p><p></p><p> <em>WestlimitAngle = 80.0125</em></p><p></p><p>Please post reactions or comment .</p><p>If someone wanted the Matlab file send me a personal message.</p><p>It also possible to copy / paste this script (only remove the <em>results</em>)</p></blockquote><p></p>
[QUOTE="harm lok, post: 1089909, member: 415123"] This is copy of the livescript i have programmed in Matlab. It is not just a complete algorithm in one equation , but a step by step approach so everyone could understand and use this method for custom situations. I have tested the script with my own channelmaster 1.2m offset dish with a 18 Inch actuator. I have also programmed an animated plot so also the moves off the actuator and dish are visualised. I will publish it here when i have converted it to an image that can published at this blog. [ATTACH type="full"]130894[/ATTACH] Matlab livescript ---------------------------------------------------------------------------------------------- Defining the dish variables Radius = 370; The radius between dish pivot and the actuator pivot point on the dish lever (mm) DishpivotOffset = 190; The length between dish pivot and the pivot of the actuator mount. (mm) ActuatorOffset = 48; Length between actuator pivot point and the centre of the actuator mount. (mm) MinActuatorLength = 210; MaxActuatorLength = 550; Minimal en maximum actuator extensions. (mm) ActPivToRadiusMin = sqrt( ( (ActuatorOffset^2) + (MinActuatorLength^2) ) ) ; ActPivToRadiusMax = sqrt( ( (ActuatorOffset^2) + (MaxActuatorLength^2) ) ) ; Calculate the distances between the actuator pivot and the actuator pivot on the disk lever for the minimal and maximum actuator lengt. (Pythagorean theorem) Pact = [ 0 ; 0 ]; Pdsh = [ 0 ; DishpivotOffset ]; Ract = ActPivToRadiusMin ; Rdsh = Radius ; Definition off the coordinates for both virtual circles of the actuator and the dish. This the definition of the virtual circles for minimal extended actuator. Given is a virtual circle with a center point M (a, b) and a radius r. So for every point on the virtual circle i have used midpoint equations : [ATTACH type="full"]130896[/ATTACH] D2 = sum((Pact-Pdsh).^2); P0 = (Pdsh+Pact)/2+(Rdsh^2-Ract^2)/D2/2*(Pact-Pdsh); t = ((Rdsh+Ract)^2-D2)*(D2-(Ract-Rdsh)^2); if t <= 0 fprintf('The circles don''t intersect : initial values not correct.\n') else T = sqrt(t)/D2/2*[0 -1;1 0]*(Pact-Pdsh); Pa = P0 + T; Pb = P0 - T; end The virtual circles are defined as a collecting of points based on a rotating triangle. I have used the pivot of the actuator as coordinate [ 0 , 0] Pa and Pb are circles' intersection points . We only need the value Pb. Pa is the other intersection point which as not important for our calculation. Pa = Coordinate of the minimal extended actuator . Pact = [ 0 ; 0 ]; Pdsh = [ 0 ; DishpivotOffset ]; Ract = MaxActuatorLength ; Rdsh = Radius ; Definition off the coordinates for both virtual circles of the actuator and the dish. This the definition of the virtual circles for minimal extended actuator D2 = sum((Pact-Pdsh).^2); P0 = (Pdsh+Pact)/2+(Rdsh^2-Ract^2)/D2/2*(Pact-Pdsh); t = ((Rdsh+Ract)^2-D2)*(D2-(Ract-Rdsh)^2); if t <= 0 fprintf('The circles don''t intersect : initial values not correct.\n') else T = sqrt(t)/D2/2*[0 -1;1 0]*(Pact-Pdsh); Pc = P0 + T; Pd = P0 - T; end Pc and Pd are circles' intersection points . We only need the value Pd. Pc is the other intersection point which as not important for our calculation. Pc = Coordinate of the maximal extended actuator . Angle = sin (Pb(2) / (DishpivotOffset - Pb(1) ) ) ; MinAngledegree = Angle / (pi/180); EastlimitAngle = 90 + MinAngledegree [I] EastlimitAngle = 67.2740[/I] Angle = sin (Pd(2) / (DishpivotOffset - Pd(1) ) ) ; MaxAngledegree = (Angle / (pi/180) ); WestlimitAngle = ( 90 + MaxAngledegree ) - EastlimitAngle [I]WestlimitAngle = 80.0125[/I] Please post reactions or comment . If someone wanted the Matlab file send me a personal message. It also possible to copy / paste this script (only remove the [I]results[/I]) [/QUOTE]
Insert quotes…
Verification
Post reply
Forums
Satellite TV receivers & systems support forums
DISH SETUP: Single sat, Multi-Sat & Motorised
Design for a Positioner with DiSEqC Decoder
This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
By continuing to use this site, you are consenting to our use of cookies.
Accept
Learn more…
Top